Verbalization of Dependencies Between Concepts Built Through Fuzzy Cognitive Maps

TitleVerbalization of Dependencies Between Concepts Built Through Fuzzy Cognitive Maps
Publication TypeBook Chapter
Year of Publication2016
AuthorsWehrle, M, Osswald, M, Portmann, E
EditorPortmann, E, Finger, M
Book TitleTowards cognitive cities: advances in cognitive computing and its applications to the governance of large urban systems
Series Title63
Volume63
Pagination123–144
PublisherSpringer International Publishing
CitySwitzerland
Abstract

The new computing paradigm known as cognitive computing attempts to imitate the human capabilities of learning, problem solving, and considering things in context. To do so, an application (a cognitive system) must learn from its environment (e.g., by interacting with various interfaces). These interfaces can run the gamut from sensors to humans to databases. Accessing data through such interfaces allows the system to conduct cognitive tasks that can support humans in decision-making or problem-solving processes. Cognitive systems can be integrated into various domains (e.g., medicine or insurance). For example, a cognitive system in cities can collect data, can learn from various data sources and can then attempt to connect these sources to provide real time optimizations of subsystems within the city (e.g., the transportation system). In this study, we provide a methodology for integrating a cognitive system that allows data to be verbalized, making the causalities and hypotheses generated from the cognitive system more understandable to humans. We abstract a city subsystem{–}passenger flow for a taxi company{–}by applying fuzzy cognitive maps (FCMs). FCMs can be used as a mathematical tool for modeling complex systems built by directed graphs with concepts (e.g., policies, events, and/or domains) as nodes and causalities as edges. As a verbalization technique we introduce the restriction-centered theory of reasoning (RCT). RCT addresses the imprecision inherent in language by introducing restrictions. Using this underlying combinatorial design, our approach can handle large data sets from complex systems and make the output understandable to humans.

URLhttps://boris.unibe.ch/70601/