
Eye-Assisted Text Editing

Future User Interfaces

Gwenael Gendre, Lionel Ieri, Romain Maillard

Teacher: Prof. Dr. Denis Lalanne

Summer 2018

1

Contents

1 Introduction 1

2 Outline 2

2.1 Motivation . 2
2.2 Concept . 2
2.3 CASE/CARE . 2
2.4 Fusion and �ssion . 3

3 Architecture 3

3.1 Hardware . 3
3.2 Software . 4
3.3 Implementation . 4

3.3.1 In the app . 4

4 Data analysis 5

4.1 Hypothesis . 5
4.2 Protocol . 5

4.2.1 Discovery . 5
4.2.2 Test . 5
4.2.3 Evaluation . 5

4.3 Experiment and results . 5
4.3.1 Quantitative measures 5
4.3.2 User feedback . 6

5 Conclusion 6

5.1 Review . 6
5.2 Personal feedback . 7

A Feedback form results 8

B Text for the test 9

1 Introduction

During the Future User Interfaces course at the University of Fribourg, we
had to develop and implement a multimodal interface, using eye tracking,
keyboard and/or mouse. Thanks to a collaboration with Logitech, each group
could use the Tobii Eye Tracker 4C.

1

2 Outline

2.1 Motivation

The idea we had was to facilitate the text editing of documents, mostly for
users that do not use the many shortcuts implemented in almost all of the
modern text editing softwares. These shortcuts are very powerful in some
cases (see e.g. Vim) but these solutions have extremely long lists of shortcuts
and macro that are not user friendly.
A user wanting to edit text will therefore have to open menus and select
the right options with the mouse, either to change the font or its size, to
navigate the spell checker or to save and send the �le. The user has to put
his hands away from the keyboard and loses time and comfort for each of
these movements.
We wanted to build an interface that could allow such users to have an easier
way of editing their documents.

2.2 Concept

Our project has a custom text editor built in, in which the user can choose to
activate � or deactivate � the eye assisted text editing. Without eye-tracking,
the user has a text editor with the usual commands: one can type text, change
the font and its size, save the �le or open another one, and spell check the
typed text. By checking the corresponding box, the user activates the eye
assistance. The mouse controls still remain available, but more possibilities
appear: as stated on the left on the window, there are two keys that can be
pressed: Alt Gr activates scrolling: look at the top or the bottom of the text
�eld and press Alt Gr, the �eld will scroll up or down. When the user presses
the Right Shift key, two things can happen. Either he was not looking at the
text �eld, and a menu with big icons opens, easier to focus with your gaze.
There are �ve options in this menu: open a �le, saving the current text �eld
as a �le, open the style editor, open the spell checker or exit the application.
The style editor allows to change the font and the size of the text, while the
spell checker displays the suggestions for the word. Or the user was in fact
looking at the text �eld, and the spell check directly opens. Note that the
options have to be selected by pressing the Right Shift key again.

2.3 CASE/CARE

According to the CASE model, our application is synergistic: we use the
two modalities (keyboard and eye) in parallel, and both accomplish the same

2

Figure 1: The CASE model

action. (See Figure 1)
The CASE model classi�ed the machine-side of the fusion, now the CARE
model is about the human-side of fusion and classi�es the usability properties:
in our application, the two modalities are complementary. We need to use
both of them at the same time to use correctly the application.

2.4 Fusion and �ssion

We use decision-level fusion: we merge lately the two modalities (the gaze
position and the key pressing) because they are weakly coupled. On the
�ssion side, it is a bit hard to have two di�erent outputs for the user: we
kept the feedback visual by highlighting the gazed-at element and by letting
the menus appear directly upon a key press.

3 Architecture

3.1 Hardware

The main hardware used for this project is a Tobii EyeTracker 4C, a USB
eye tracker using an infrared camera to track the gaze position and translate
it to the screen. This system is relatively low cost and works well enough
for many usages, as unlike more expensive systems, the point of the 4C isn't
to properly track every single movement but more to determine the di�erent
areas gazed upon. And for our project we will use it in coordination with a
standard keyboard.

3

3.2 Software

To be able to access the Tobii gaze data, we used the Tobii Core Standard
Development Kit 1 and its provided API s. We then decided not to implement
a plugin for an already existing text editor but rather to create our own one.
TheWindows Presentation Foundation2 was all we needed: windows creation
with built-in text �elds and style modi�cation. The WPF uses the XAML

language. 3

3.3 Implementation

The integration of the Tobii in our application is quiet easy. There is a good
synergy between WPF and the Tobii SDK. We can add some parameter to
the element of a window to add the capacity to use the eye tracker.

<Button x:Name=" va l i d a t i o n "
wpf :Behaviors . I sAc t i v a t ab l e="True"
wpf :Behaviors . I sTentat iveFocusEnabled="True"
wpf :Behaviors . Act ivated=" ac t i va t i on_func t i on ">

The above example of code allows a button to be activated by the eye
tracker. When it is activated, it calls the function activation_function.

3.3.1 In the app

We use the eye tracker in our application as follows:

• Scroll the text

• Quick menu for the main function of the application

• Select the style of the text

• Correct spelling mistakes

1https://developer.tobii.com/tobii-core-sdk/
2https://msdn.microsoft.com/fr-fr/library/aa970268(v=vs.100).aspx
3Our code and a released version is available on GitHub under the MIT license

4

https://developer.tobii.com/tobii-core-sdk/
https://msdn.microsoft.com/fr-fr/library/aa970268(v=vs.100).aspx
https://github.com/marom17/E.A.T./releases/tag/1.0.5

4 Data analysis

4.1 Hypothesis

We hope to see a signi�cant amelioration in the text editing quality by using
our application. Therefore we can formulate our null hypothesis as follows:

H0 : There is no increase in speed by editing text with the eye tracker.

along with the alternative hypothesis:

H1 : Editing text with eye tracker support is faster than without it.

4.2 Protocol

4.2.1 Discovery

After giving the user a brief introduction on eye tracking with the 4C we
go through the calibration process and let them play a bit with the system.
Then we introduce our software and let them play a bit with it to get used
to it.

4.2.2 Test

The user was �rst asked to copy a given short text with a precise formatting,
e.g. di�erent fonts and font sizes (see Appendix B). This was done either
with the eye-tracking interface or with the classical one.
We then swapped to the other modality choice and asked the user to repeat
the task on the same text.
The time for both parts was measured.

Originally we planed also to check the usability to use eye tracking on
text editing, but after the �rst trials our method didn't work.

4.2.3 Evaluation

The user then �lled a form to gather their feedback and impression. This
form touched upon personal preferences, potential (does the user feel like he
could become more pro�cient with more experience), issues and ideas.

4.3 Experiment and results

4.3.1 Quantitative measures

Nobody was faster using the eye tracking. And for some users the eye tracking
was nearly 3 time slower (see Table 1.) With a mean of respectively 232.875

5

Mouse Eye tracking Ratio E/M
206 434 2.11
184 254 1.48
270 520 1.93
147 411 2.79
169 301 1.78
398 562 1.41
165 316 1.92
324 437 1.35

Table 1: Results in second

and 404.375, the mouse still reigns over the eye tracking in our sample. T-
Test only reinforce this, clearly showing the favour towards mouse tracking.

Welch Two Sample t−t e s t
t = −3.4619 , df = 13 .545 , p−value = 0.003984

mean o f x mean o f y
232.875 404.375

#With x f o r Mouse usage and y f o r Eye t r a c k e r .

4.3.2 User feedback

In the user feedback given in the form, the trend of "Keyboard and mouse are
a better combination of modalities for text editing" is a bit toned down: all
users rated all three impressions � ease of use, swiftness, comfort � with at
least an Average rating, and most votes were between Average and Excellent.
The preference of users still go to the keyboard and mouse combination in
most cases.
Even though all but one of them felt that they experienced issues with eye
tracking, what really gives us hope for such a project is that no user thinks
he cannot improve, even if some may not be sure about it. See Appendix A

5 Conclusion

5.1 Review

In this whole experiment, we have seen that our interface is not yet better
than the conventional interface. We believe, as do most of the users, that our

6

usage of eye tracking can get better and that interfaces using eye tracking in
some way will one day make text editing easier for everybody.
One fact that we observed is that the users often had their �rst contact with
Eye tracking only a few minutes before our experiment. This may explain
some of the di�erence for the time needed to edit text with eye tracking.
As said in section 4.3.2 about feedback, the users mostly thought they could
improve. It could be interesting to make this experiment again with more
experimented subjects.
Our experience was a bit exaggerated, as we forced the user to do multiple
style changes in a row; which is not usual in the documents one can easily
type. This factor causes the time di�erence to be higher than it would have
with less editing and more typing, which is not a�ected by eye tracking. It
is still to be noted that all users did not use the mouse at all for editing with
eye tracking. This is a positive note for our interface. One must keep in
mind the fact that our application was meant to be a quick testing tool, not
a complete standalone text editor. Therefore it su�ered from some problems
that would have been avoided by creating a plug in for an existing editor.
We can still extract a few reasons that made our application not fully bene�t
from eye tracking � and some possible solutions to them:
Our text editor was quite basic: we adapted a bit the size of some menus, but
a list menu does not feel really adequate for eye selection. We could adapt
the menus, for example with circular menus or bigger tiles. As already ex-
plained in section 3.1, the Tobii Eye Tracker 4C is not exceptionally precise.
Excluding calibration problems, we still need to adapt our application to the
device's capabilities.
To follow on the last point, we kept some simple shortcuts for menu genera-
tion and simple element disposition. It could be possible to either �nd better
dispositions and shortcuts by testing di�erent con�gurations or by allowing
the user to choose them to �t his preferences. One example is the spell
checker feedback: by opening the spell check, the user masks the text and
does not see the sentence being corrected. We could display the few words
before and after the wrongly spelled word in the suggestion box.

5.2 Personal feedback

After some discussion, it appeared that all three of us had some great plea-
sure in doing this project! We discovered the Tobii Eye Tracker, we had fun
playing with it, and seeing our application work with eye control was a great
reward. The WPF also turned to be really practical and easy to use, it's a
tool we may use again in the future.

7

A Feedback form results

8

Tâche 1

La cigale et la fourmi Times New Roman 36

La cigale ayant chanté tout l’été Arial 20

Se trouva for dépourvue, Arial Black 20

Quand la bise fut venue Calibri 16

Pas un seul petit morceau Calibri 36

De mouche ou de vermisseau Times New Roman 14

Elle alla crier famine Arial Black 16

Chez la fourmi, sa voisine Arial Black 20

Lui priant de lui prêter Times New Roman 48

Quelques grains pour subsister Arial 20

Je vous paierai, lui dit-elle Arial 12

Avant l’août, foi d’animal Calibri 22

Intérêt et principal Calibri 16

Tâche 2
Longueur, Substance, Terriblement, Betterave, Langage

B Text for the test

9

	Introduction
	Outline
	Motivation
	Concept
	CASE/CARE
	Fusion and fission

	Architecture
	Hardware
	Software
	Implementation
	In the app

	Data analysis
	Hypothesis
	Protocol
	Discovery
	Test
	Evaluation

	Experiment and results
	Quantitative measures
	User feedback

	Conclusion
	Review
	Personal feedback

	Feedback form results
	Text for the test

